If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+2k-17=0
a = 1; b = 2; c = -17;
Δ = b2-4ac
Δ = 22-4·1·(-17)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{2}}{2*1}=\frac{-2-6\sqrt{2}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{2}}{2*1}=\frac{-2+6\sqrt{2}}{2} $
| (x+27)*15=570 | | 3^(2t-1)=7^(t+2) | | 10m=1000 | | 2x=5x+50 | | 25^2x=25^5x+10 | | 25^2x=12^5x+10 | | (5-2y)(2+3y)=0 | | 9g=g+16g | | 35z2–44z=0 | | 2x²-12x=15 | | 46d2–17d=0 | | 10x=126−4x | | s(s+4)(s+10)=0 | | 2x(x-4)=-8 | | a(a+3)=28 | | c+5=4/9c | | –2p+10p=7p | | 5d=2d | | 45+3x=108 | | 0=9x2+117x | | 16-4x=-2+2x | | 4x-5x-6=0 | | x-0.35x=24500 | | 7z-33=51 | | x*0.12=1.54 | | 6(q-78)=72 | | 0=2q+6 | | 3z+7=8z-18 | | 20-5*(4-2x)=40 | | (x-3)⋅(x-2)=6⋅(x-3) | | x–9=5x–49 | | 40/25=b/20 |